
COMP482
Cybersecurity

Week 8 - Wednesday

Dr. Nicholas Polanco

(he/him)

Important Notes

- We will touch base during the activity to see if we need Friday as an
additional work day, that would mean this is my last lecture

- We have Monday off next week and Wednesday is (as of right now) a
Project work day. We will discuss later.

- Your project presentations are due a week from today (Week 9
Wednesday) at midnight.

- I won’t be granting any extensions for this, you need to have them done.
- All assignments should be added to kit for the rest of the term,

please let me know if I am missing anything
- Would we rather select the order on Friday of this week (Week 8) or

Wednesday of next week (Week 9)?

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Project Deliverable:
Midway Report

Extra Credit:
AES or RSA

Important Dates (Week 8)

Outline

1. What is Safe Software?
2. Principles of Secure Software Development
3. Risk Assessment
4. Threat Models
5. Activity: Safe Software

What is Safe Software?

What is Safe Software?

Safe software is software that operates reliably under expected and
unexpected conditions without causing harm to users, systems, data, or
the environment.

It is designed, developed, and maintained to prevent accidental or
intentional actions that could lead to unsafe behavior, security
breaches, or system failure.

Principles of Secure Software
Development

Principles of Secure Software Development

Avoid 3 Common Failures:

1. Organization has no formal policy. Thus, personnel cannot
consistently make necessary decisions.

2. Organization has no reasonable response plans for violations,
incidents, and disasters.

3. Plans don’t work when needed because they haven’t been regularly
tested, updated, and rehearsed. (e.g., failure of operational security)

What Can We Do?

Build in Security from the Start

- Have a plan!
- We should think about the system and how security can be added before

implementation.
- Clear understanding of security policy, and have a security policy
- We should be prepared to respond if something occurs, and make

sure we are ready to handle it

Principles of Secure Software Development
(continued)

Image Credit
https://www.etsy.com/listing/1239850637/fire-safety-fire-drill-routine-classroom

What Can We Do? (continued)

Secure Software Development Lifecycle (SSDLC)

- Ensuring that the final product meets the needs and expectations of
the stakeholders and users

- Need a good grasp of our requirements
- Incorporating security at every phase of the software development

lifecycle—from requirements to deployment and maintenance.

Design with Care

- We want to use good tools and practices

Principles of Secure Software Development
(continued)

Principles of Secure Software Development
(continued)
What Can We Do? (continued)

Understand Users

- We should identify our assets in a system, and ensure we protect
relevant data.

- Narrow focus is better than broad, expanding capabilities too much can
cause some issues. Why?

- Understand that there is no “average user”
- What do I mean by that?

What Can We Do? (continued)

Understand Balance Between Features and Security

- Find the middle ground between safety and customer satisfaction.
- Manage complexity and change

- We want easy to test so we can verify its strength, fewer flaws
- Design of security should be as small and simple as needed

Principles of Secure Software Development
(continued)

Principles of Secure Software Development
(continued)
What Can We Do? (continued)

Employ Testing

- We have lots of tools to help with testing now
- What types of tools can we use to help with this?

The Principle of Open Design

- Our security mechanism should not be a secret!
- Who agrees? Why or what not?

What Can We Do? (continued)

Set Security Goals

- Consistency - The property to ensure that
a consistent view of each data item is
shown to every user

- Control - The processes in place to protect
from dangerous network vulnerabilities
and data hacks

- Audit - A comprehensive analysis and
review of your IT infrastructure

Principles of Secure Software Development
(continued)

Image Credit
https://www.techtarget.com/whatis/definition/Confidentiality-integrity-and-availa
bility-CIA

Principles of Secure Software Development
(continued)
What Can We Do? (continued)

Seek Good Security Means

- Limiting what happens, who can make it happen, how it happens,
who can change the system

Fail Securely

- Software should default to a secure state in the event of failure.
- Example: If a login system fails, it should deny access—not grant it.

What Can We Do? (continued)

Set a Security Plan

- Risk assessment
- Cost-benefit analysis
- Creating policies to reflect your needs
- Implementation
- Audit and incident response

Principles of Secure Software Development
(continued)

What Can We Do? (continued)

Know When Software is Secure

- Does not disclose information
- Does not allow unauthorized access
- Does not allow unauthorized change
- Maintains quality of service despite input and load
- Preserves authenticity and control
- Avoid surprises….

Principles of Secure Software Development
(continued)

Principles of Secure Software Development
(continued)
What Can We Do? (continued)
Least Privilege

- Every module, process, or user should have the minimum level of
access—or permissions—needed to perform its function.

- Example - A database user only allowed to read data shouldn't have
permission to delete it.

Secure Authentication and Authorization
- Authentication is verifying users are who they claim to be (e.g., via

strong passwords, MFA).
- Authorization is ensuring users can only access resources they’re

permitted to.

What Can We Do? (continued)

Defense in Depth

- We add multiple layers of security controls that are placed
throughout the system. Cheese?
- Example - Input validation on both client and server, plus a Web

Application Firewall (WAF).

Input Validation and Sanitization

- All external inputs must be validated and sanitized to prevent
injection attacks.

Principles of Secure Software Development
(continued)

What Can We Do? (continued)

Keep Security Simple (KISS Principle)

- Avoid overly complex security mechanisms that are hard to
understand or audit.

- Why would we want a simple system?

Secure Defaults

- The default configuration of a system should be secure.
- Example: Disable unused services by default; require strong passwords out

of the box

Principles of Secure Software Development
(continued)

Principles of Secure Software Development
(continued)
What Can We Do? (continued)

Logging and Monitoring

- We want to maintain logs of security-relevant events and monitor
them for anomalies.

- Should we also ensure logs are also protected against tampering?

Risk Assessment

A cybersecurity risk assessment is a process that analyzes an
organization's environment to identify and prioritize potential threats
and vulnerabilities.

Risk Assessment

3 Questions to Answer:

1. What am I trying to protect (asset)?
2. What do I need to protect against (threats)?
3. How much time, effort and money am I willing to expend to obtain

adequate protection?

3 Key Steps:

1. Identify Assets
2. Identify Threats
3. Calculate Risks

Risk Assessment (continued)

Tangibles

What are some tangibles you can think about?

Intangibles

What are some intangibles you can think about?

Risk Assessment (continued)

Tangibles

Computers, disk drives, proprietary data, backups and archives,
manuals, printouts, commercial software distribution media,
communications equipment & wiring, personnel records, audit records

Intangibles

Safety & health of personnel, privacy of users, personnel passwords,
public image & reputation, customer/client goodwill, processing
availability, configuration information

Risk Assessment (continued)

Risk Assessment (continued)

What are some risks?

- Illness/loss of key people
- Loss of phone/network services

- Key to a productive workday
- Loss of utilities (phone water, electricity) for a short or prolonged

time
- Natural disaster

- Lightening or flood
- Theft of disks, tapes, key person’s laptop or home computer

Risk Assessment (continued)

What are some risks? (continued)

- Introduction of a virus
- Computer vendor bankruptcy
- Bugs in software
- Labor unrest
- Motivated hackers

Estimate likelihood of each threat occurring

- If an event happens on a regular basis, you can estimate based on
your records

- Power company: official estimate of likelihood for power outage during
coming year

- Insurance company: actuarial data on probabilities of death of key
personnel based on age & health

Risk Assessment (continued)

Risk Assessment (continued)

Create a Policy

- Defines what you consider to be valuable and what steps should be
taken to safeguard those assets
- States the responsibility for that protection.
- Provides grounds upon which to interpret and resolve any later

conflicts that might arise
- Policy should be general and change little over time

- Should not list specific threats, machines or individuals by name

Threat Models

A threat model is a structured approach used to identify, assets, and
prioritize potential security threats to a system, application, or
organization.

*It helps you understand what you’re defending, what you’re defending
against, and how to defend against it.

Threat Models

Key Elements of a Threat Model
System
1. Assets – What you're trying to protect (e.g., data, systems, user

credentials).
2. Threats – Potential events or actors that can cause harm (e.g., hackers,

insiders, malware).
3. Vulnerabilities – Weaknesses that could be exploited (e.g., unpatched

software, misconfigurations).
4. Attack vectors – The paths or methods used to exploit vulnerabilities

(e.g., phishing, SQL injection).
5. Mitigations – Security controls or strategies to reduce risk (e.g.,

encryption, access controls).

Threat Models (continued)

Examples Threat Models

1. Web Application Threat Model

- Assets: User data, backend database
- Threats: SQL injection, XSS, CSRF
- Vulnerabilities: Lack of input validation, poor session management
- Attack Vectors: Malicious user inputs, stolen cookies
- Mitigations: Input sanitization, HTTPS, secure authentication

mechanisms

Threat Models (continued)

Examples Threat Models

2. Cloud Infrastructure Threat Model

- Assets: Customer data stored in cloud services
- Threats: Misconfigured storage, privilege escalation
- Vulnerabilities: Default credentials, exposed ports
- Attack Vectors: phishing
- Mitigations: regular audits, encryption

Threat Models (continued)

Examples Threat Models

3. IoT Device Threat Model

- Assets: Device firmware, sensor data
- Threats: Physical tampering, remote code execution
- Vulnerabilities: Hardcoded passwords, lack of firmware updates
- Attack Vectors: Local access, open wireless interfaces
- Mitigations: Secure boot, firmware signing, network segmentation

Threat Models (continued)

Common Threat Modeling Methodologies

- STRIDE (by Microsoft)
- We will walk through STRIDE together

- DREAD (not as popular today)
- PASTA
- OCTAVE

Threat Models (continued)

STRIDE

- Spoofing
- Tampering
- Repudiation
- Information disclosure
- Denial of service
- Elevation of privilege

Threat Models (continued)

Image Credit
https://dzone.com/articles/stride-threat-modeling-guide-secure-implementation

Example for STRIDE (A Mobile Banking Application)
- Spoofing: An attacker impersonates a legitimate user to steal funds

from their account.
- Mitigation: Implement multi-factor authentication (MFA) and use biometrics

(e.g., fingerprint or face recognition) for login.
- Tampering: An attacker modifies a transaction request to transfer

money to their own account.
- Mitigation: Encrypt transactions (e.g., use HTTPS), validate inputs, and

implement transaction integrity checks (e.g., digital signatures).
- Repudiation: A user denies making a transaction, and there's no

way to prove it was them.
- Mitigation: Keep secure logs of all actions, with non-repudiation features

like digital signatures and audit trails.

Threat Models (continued)

Example for STRIDE (A Mobile Banking Application) (continued)
- Information Disclosure: A hacker gains access to a user's personal

financial information via a vulnerability.
- Mitigation: Encrypt sensitive data, ensure proper access controls, and

regularly audit access logs.
- Denial of Service (DoS): A DDoS attack overloads the app’s servers,

preventing legitimate users from accessing their accounts.
- Mitigation: Use rate-limiting and DDoS protection services like Cloudflare,

and ensure the infrastructure is scalable and resilient.
- Elevation of Privilege: A low-level user exploits a vulnerability to

gain administrative access and transfer funds from other accounts.
- Mitigation: Apply the principle of least privilege, regularly patch security

vulnerabilities, and enforce role-based access control.

Threat Models (continued)

Why Threat Modeling Matters:

- Helps prioritize security efforts
- Guides secure design decisions
- Enhances incident response readiness
- Reduces risk in software and infrastructure

Threat Models (continued)

Activity: Safe Software

Activity: Safe Software

In this assignment, you are designing a new software-based system
from a security-first perspective.

You won’t be writing full production code—instead, your focus will be
on the secure design of the system.

You will identify potential threats, outline system components, and
propose security controls to reduce risk. Your final deliverable will
include a design document and a threat model.

Attendance

https://forms.office.com/r/u62XL60D
H5

*This does not record names, I will
take attendance up here. We can
chat afterwards.

